Studies on Nuclear Cogeneration Plant- A Review
Keywords:
Cogeneration, TESS, SMR, Seawater Desalination, HTTRAbstract
The rise in the standard of living, worldwide growing population and development plans will result in an increase in energy and growing water consumption. For this, we have to install more Nuclear Cogeneration Plant (NCP) or utilized the already installed NCP flexibly and more efficiently within the area of cogeneration applications having power and heat demands of varying nature such as in District heating systems, for seawater or cleaner desalination. The purpose of this study is to discuss how to manage varying energy demands and the need to reduce greenhouse gas emissions. A thermal heat storage system is included in the NCP for this reason, assisting in the delivery of heat to the District heating system while also charging the NCP
References
Ghazaie, S. H., Sadeghi, K., Chebac, R., Sokolova, E., Fedorovich, E., Cammi, A., Ricotti, M.E.&Shirani, A. S. (2022). On the use of advanced nuclear cogeneration plant integrated into latent heat storage for district heating. Sustainable Energy Technologies and Assessments, 50, 101838.
Lipka, M., &Rajewski, A. (2020). Regress in nuclear district heating. The need for rethinking cogeneration. Progress in Nuclear Energy, 130, 103518.
Sadeghi, K., Ghazaie, S. H., Chebac, R., Sokolova, E., Fedorovich, E., Cammi, A., Ricotti, M.E.,&Shirani, A. S. (2022). Towards net-zero emissions through the hybrid SMR-solar cogeneration plant equipped with modular PCM storage system for seawater desalination. Desalination, 524, 115476.
Jovan, D. J., Dolanc, G., &Pregelj, B. (2021). Cogeneration of green hydrogen in a cascade hydropower plant. Energy Conversion and Management: X, 10, 100081.
Dong, Z., Jiang, D., Guo, Z., & Huang, X. (2020). Flexible Control of Nuclear Cogeneration Plants for Balancing Intermittent Renewables. IFAC-PapersOnLine, 53(2), 12560-12565.
Kowal, K. (2022). Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant. Reliability Engineering & System Safety, 223, 108468.
Kowalczyk, T., Badur, J., & Bryk, M. (2019). Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energy Conversion and Management, 198, 111805.
Karameldin, A., &Mekhemar, S. (2001). Siting assessment of a water—electricity cogeneration nuclear power plant in Egypt. Desalination, 137(1-3), 45-51.
Asiedu-Boateng, P., Akaho, E. H. K., Nyarko, B. J. B., &Yamoah, S. (2012). Modeling and simulation of cogeneration nuclear power plant for seawater desalination. Nuclear Engineering and Design, 242, 143-147.
Schmidt, J. M., &Gude, V. G. (2021). Nuclear cogeneration for cleaner desalination and power generation–a feasibility study. Cleaner Engineering and Technology, 2, 100044.
Jaskólski, M., Reński, A., &Minkiewicz, T. (2017). Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat. Energy, 141, 2470-2483.
Dong, Z., & Pan, Y. (2018). A lumped-parameter dynamical model of a nuclear heating reactor cogeneration plant. Energy, 145, 638-656.
McDonald, C. F. (1998). Mobile hybrid (nuclear/oil fired) gas turbine cogeneration power plant concept. Applied thermal engineering, 18(6), 353-368.
Verfondern, K., Yan, X., Nishihara, T., &Allelein, H. J. (2017). Safety concept of nuclear cogeneration of hydrogen and electricity. International Journal of Hydrogen Energy, 42(11), 7551-7559.
Rosen, M. A. (2009). Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province. Energy for Sustainable Development, 13(1), 43-51.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Durgesh Chavhan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.