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Abstract 
Plastic deformation plays a decisive role in inelastic deformation of solids. Therefore, 

it is appropriate to analyze mechanical behaviour within an ideal rigid plastic model with 

two loading surfaces. In the first section the problem of deformation of rigid plastic bodies is 

defined at the constant temperature in two equivalent forms: as a principle of virtual 

velocities and as a requirement of the minimum dissipative functional. In the second section 

the rigid plastic model of the solid is studied at the changing temperature with two loading 

surfaces. Two optimal principles are stated: for the force loading and for shape restoration. 

The existence of the generalized velocities is proved for 3D domains. The first and second 

laws of thermodynamics introduced in the design model enable the application of the 

variational principle at changing temperatures. In the third section shape memory materials 

are defined as solids with two loading surfaces. In conclusion problems for further studies 

are stated. 

Keywords: shape memory materials, rigid -plastic bodies, optimal principles, model with two 

loading surfaces, laws of thermodynamics, existence of generalized velocities. 

1. INTRODUCTION  

At various temperatures θ, curves of relative extensions of central tie bars made of 

ideal elastoplastic shape memory materials depending on applied stresses σ are designated as 

ε = Ψ(σ) and are shown in Figure 1 as polygonal lines with arrows. Constants θ- and θ+ 

emphasize a range of temperatures, within which a specimen can restore its initial shape.  

 

Figure 1. Curves ε = Ψ(σ) (polygonal lines with arrows, σ — stress, ε — relative extension) 

of the bar made of elastoplastic shape memory material and elongated along one axis at 
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various temperatures  . The stresses change on the graphs ε = Ψ(σ) in the direction of the 

arrows: a) at low temperatures  , ε0 is the residual deformation after the load removal; b) 

at shape restoration temperature  : force loading under stress σ 1  and shape restoration 

when σ = 0; c) relationship between the stresses and relative deformations within the 

temperature range 
   : force loading under σ 2 , shape restoration under  2  

If, shape memory solids are no different than ideal elastoplastic bodies: once 

unloaded, residual deformation is observed. When, ‘reverse deformation’ and slight elastic 

deformation, satisfying stress, are detected [1-3]. Experiments show that, therefore, can be 

taken in a first approximation and the rigid plastic element that underwent tension (Figure 2) 

can be reviewed. 

 

Figure 2: a) — tensile curve for the shape memory rigid plastic bar at low temperatures; b) 

— relationship between stress (σ) and deformation (ε) for the rigid plastic bar at “shape 

restoration temperatures 
   ” 

The behaviour of rigid plastic bodies at constant temperature θ < θ- has been reviewed 

in detail and is applicable to shape memory continuums (Figure 1a) under any loading. The 

purpose of this paper is to study deformation pattern of ideal shape memory materials in case 

of, when ‘reverse deformation’ occurs: heat supply eliminates residual deformation   under 

low stresses. It is quite difficult to explain the behaviour of the solid (Figure 2a) based on the 

ultimate analysis of the elastoplastic model. In all known articles the solutions for the shape 

memory solids were found within type BD spaces (limited by the deformation) [4-6] using 

variational inequalities or variational principles like Reissner’s. Basically, the existence and 

uniqueness of the solutions is proved under limited deformations. At the same time, big 

(ultimate) deformations are of main interest, when solids change their shape significantly. 

Besides, under ultimate deformations, the uniqueness of velocities is broken, which requires 

theoretical justification. 

This paper offers direct analysis of the limit case based on some extension of the 

model of the elastoplastic solids. The process of deformation is studied phenomenologically 

without the theory of austenite-to-martensite transformations [7-10]. The objective is to 

explain the main behavioural characteristics of the shape memory solids observed during the 

experiments. First, the main points of deformation of rigid plastic bodies are defined at 
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constant temperature. Then the extended rigid plastic model with two loading surfaces is 

introduced. The existence of solutions for the accepted model is proved based on the main 

laws of thermodynamics. As a result, the deformation of the shape memory solids is 

explained within the theory of ideal plasticity.  

2. PROPERTIES OF RIGID PLASTIC BODIES AT CONSTANT TEMPERATURE 

The rigid plastic body D is defined as a 3D domain of the continuum in Cartesian 

coordinates 
ix ( i 1,2,3 ) with the border 

pu DDD  . The part of the border 
uD  is 

fixed, and external stress 
iF  are known on 

pD . In each point D velocity vector ui and 

symmetrical stress tensor 
i j  are set. Using the velocity vector, the linear tensors of the 

deformation rates 
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and relevant deviators iiijije   3, are calculated. Summation is done over the 

repeated subscript. The rigid plastic continuum is incompressible, therefore, 0  is 

postulated. Tensor 
i j  is associated with stress deviator 

i js  by the equation 

i j i j i is , 3        (2) 

Vector ui is considered acceptable if it is a function of 1L  with the norm 
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and is equal to zero on the border 
uD . Here dx  is a differential of volume. 

Hereinafter, the ideal rigid plastic model by St. Venant-Levy-Mises [11-12] with the 

following properties is reviewed: 

1. Tensor 
i j  exists only when deviator 

i js  does not cross the boundaries of the loading 

surface within the nine-dimensional space  

 Φ 2 2

i j i j( s ) s 2 0    (4) 

where   is a shear yield stress of the material. 

2. If 
2 2

i js 2 , then 
i je 0.  

3. If 
2 2

i js 2 0,   then 
i j i je s .  

Thus, 
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Because of the above equation, deviator 
i js  is determined by 

i je  uniquely; the converse 

proposition is incorrect. 

Besides, the following follows from (5) 

 
1

2 2
i j i j i j

i j

s , ( e ) 2 ( e ) .
e


 


 


 (6) 

Function   is called a dissipative potential (function) corresponding to the loading 

function Φ i j( s ). 

Geometrical interpretation of the link between 
i je  and 

i js  is shown in Figure 3, where 

cross-section of surface Φ i j( s ) 0  with deviator plane 033 s  is presented in the main axes 

of deviator 
i js .  

On the loading surface the direction of tensor 
i je  coincides with the outer normal line 

and its second invariant is proportional to the power of the plastic deformation. 

 

 

Figure 3. Cross-section of loading surface 
i j( s ) 0   with deviator plane .033 s  Deviator 

of displacement velocities 
i je  is normal to the loading surface. 

If Φ i j( s ) 0 , then 
i je 0.  Slow (quasistatic) movements of the rigid plastic continuum 

occur in accordance with the principle of virtual powers, i.e. the equality 
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p

i j i j i i i i

D D D

s e dx f u dx F u dS

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(7) 

holds for every geometrically acceptable 
iu , that are connected to 

i js  with equation (5). 

Let us designate the set of permissible velocities 
iu  as .P  In the equation (7) dS  is a 

differential of the surface area 
pD , 

if  is a load intensity per unit volume and 
iF  is an 

intensity of external forces on surface 
pD . 

It is established [13] that the search for solutions to (7) equals to the problem of the 

functional minimum 

 

p

i j i j i i i i

D D D

J( e ) ( e )dx f u dx F u dS


      
(8) 

on the set of permissible velocities Pui . 

The set of numbers 
sm  (static coefficients) is introduced based on the equality  

 

p

0

i j i j s i i i i

D D D

s e dx m f u dx F u dS ,


 
  
 
 

    (9) 

that is done under actual loads 
ii Ff ,  for every Pui . 

Additionally, in each point of domain D there is statically acceptable safe deviator 
0

i js  

(inside the loading surface 
i j( s ) 0  ). 

The other set of numbers 
km  (kinematic coefficients) is calculated from the equation  

 

p

i j k i i i i

D D D

( e )dx m f u dx F u dS
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    (10) 

for acceptable Pui  and set loads ii Ff , . 

It is proved
 
[13 -14]  that the following limits exist 
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(11) 

and the below statements are valid: 

1. When *mm   the problem of the minimum of the function 
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has only a trivial solution for any geometrically acceptable Pui  because the safe deviator 

of stresses exists in all points of the body D. 

2. When *mm  , system (7) has no solutions because deviator 
i js  must not be outside 

of the loading surface. 

3. When *mm  , the problem has a non-trivial solution for a larger class of functions 

than in equation (3). The number *m  is called an ultimate load coefficient, and the following 

equation is true 

 
i

p

i j

D
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u P
i i i i
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( e )dx

m inf
f u dx F u dS
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

 
 (13) 

Thus, the rigid plastic body can change its shape only when *mm  , while the set 
iu  

should be chosen from wider space than 1L . The latter results from the fact that the space 

with the norm (3) is not reflexive: *mm  does not follow by weakly convergent sequence 

inu , ,n  to element 0

iu  from L1. In other terms, there is no such sequence 0
1

0 
L

iin uu , 

that for any functional 
*

1L  from the space conjugate to 1L , the equality )()(lim 0*

1

*

1 iin
n

uLuL 


 

would hold.   

The general pattern of the space completion 1Lui   is as follows. Let us designate the 

set of vectors with the norm (3) as K  and review the space of linear functionals *K

conjugated to it. One-to-one correspondence )(*

iuK  is established between iu  and some 

functional from *K  based on the equation  

 ii uKuK ,)( **   (14) 

In (14) the norm of the functional *K  on set K  is on the left and the value of the 

functional *K  on function iu  is on the right. Let us choose the total separable set 0B  within 

*K .  Totality means that if 0, ijeL  for every 0BL , then 
i je 0 . In this case the second 

conjugated space MB *0  is the required extension. The convergence in norm (3) should be 

replaced with the weak* sequential convergence 

 *0* ,,lim KuKu iin
n




 (15) 

Functional 
i jJ( e ) increases on M  

 
i j i jJ( e ) , e M   (16) 
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Besides, 
i jJ( e ) is weakly* semi-continuous on M , i.e. for every sequence of n

i je M , 

weakly convergent to 
i je , the following equation holds 

 n

i j i j
n

lim J( e ) J( e )


  (17) 

Therefore, there is element 
i je M , where 

i jJ( e )  reaches the lower bound *m . The 

choice of 0B  is not unique. The subset of continuous functions can be defined as 0B , then 
*0B  is a set of measures where the existence of solutions to the rigid plastic problem was first 

proved [15]. Having defined 0B  as a set of bounded variation function, we obtain another 

class of solutions commonly occurring in practice, i.e. fields of vectors with finite jumps ][ iu  

along internal surfaces S .  The main equations (7) is re-written as 

 

p

i j i j i i i i i i
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s e dx [u ]dS f u dx F u dS A(u ).




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(18) 

The static and kinematic coefficients are calculated per the formulas: 

p

0 0

i j i j i s i i i i

D S D D

s e dx [u ]dS m f u dx F u dS ,


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
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   
 
 

     (19) 

p

i j i k i i i i

D S D D

( e )dx [u ]dS m f u dx F u dS .



 


 
   
 
 

     (20) 

The ultimate load exists, and equations (11)–(13) are not changed. Hereinafter, they are 

going to be used as such. It should be noted that equality (18) means the law of conservation 

of energy (first law of thermodynamics) on the actual velocity field iu  and at constant 

temperature, if 

i j i j i i

D S

s e dx [u ]dS E(u )



    

is the rate of internal energy variation. In case of no heat supply Q , the first law of 

thermodynamics  

 AQE    (21) 

turns into equality E A.  

The second law of thermodynamics in the form of the Clausius statement at constant 

temperature 

 E H Q   (22) 
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where H  is an entropy (calorie per [16]) that also holds because of non-negativity of ).( iuE  

Thus, the variational principle (18) describes the behavior of the rigid plastic continuum at 

constant temperature without the laws of thermodynamics. 

The previous reviews demonstrate that the problem of the minimum functional 

 
i

p

i j i i i i i
u P

D S D D

inf ( e )dx [u ]dS m f u dx F u dS



 




  
    

  
  

     (23) 

always has solutions like 0

ii Cuu  , where C  is invariable because   is a homogeneous 

function of first degree i i(Сu ) C (u )  . Normalization 1iu  is usually chosen for the 

invariable C . The analog of the second law of thermodynamics seems more physically based: 

when the internal energy dissipates in atmosphere (at constant temperature), there is such an 

invariable 0C  that the following inequality holds 

 i j i 0

D S D

( e )dx [u ]dS С dx.



      
(24) 

Once velocities iu  are estimated, the displacements of body points iw  are calculated by 

integration of the equations 

 i
i

dw
u ( x ).

dt
  (25) 

These equations can be solved on the time interval Tt 0  within the same 

generalized extensions MB *0  of the initial space if functions iu  are measurable. In practice 

a finite number of intervals is normally used, with the constant value of iu  on each of them. to 

make integration (25) possible. Thereby, the problem of deformation of the shape memory 

rigid plastic continuum is solved when θ < θ. 

3. RIGID PLASTIC BODIES WITH TWO LOADING SURFACES 

 Let us consider a continuum that can deform at constant temperature, only 

when the stresses at any point are located in the nine-dimensional space of deviators within 

the volume R limited by similar loading surfaces Φ i j( s ) 0  and 
0Φ i j( s ) 0  (Figure 4). 

The equations for the loading surfaces are as follows: 

 Φ 2 2

i j i j( s ) s 2 0,   0Φ
2 2

i j i j *( s ) s 2 0,   * ,  0 1.   (26) 

If Π is an internal point on domain R, then 
i je 0.  If Π is located on the external 

border, then 2

i j i ji j
e s e / ( 2 ),  whereas 2/ *

20 ijijij ese   on the internal border. 

Deviators 0

i j i je , e  are directed to the loading surfaces along the outward normal. 
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Figure 4. Cross-section of two loading surfaces with the deviation plane Φ i j( s ) 0  и 

0Φ i j( s ) 0.  Tensors 0

i j i je ,e  are normal to the loading surfaces, R is a domain of possible 

stress deviators, Π is an arbitrary point on domain R. 

Formulas (26) and equations for 0

i j i je , e  meet the requirement to orthogonality of 

thermodynamic forces and fluxes [17]. 

Let us associate the following dissipative functions with each loading surfaces: 

 2

i j i j( e ) 2 e  2

0 i j * i j( e ) 2 e .   (27) 

Figure 4 has a distinctive feature. If point   moves in a straight line that passes through 

the origin of coordinates (proportional loading), the directions of tensors 0

i j i je ,e  differ by 

180°. It could be interpreted as a shape memory on surface 
0Φ i j( s ) 0  after deformation of 

the body with the forces according to configuration Φ i j( s ) 0.  

Let the rigid plastic body be loaded with the forces (by analogy with the equation (7)). 

The loads are acceptable if deviator 
i js R  exists and for every geometrically feasible iu  the 

following equality holds 

 

p

i j i j i i i i i

D D D

s e (u )dx f u dx F u dS.


     
(28) 

Let us review the proportional loading by deviator 
i jm s . Two ultimate parameters 

},{ **

 mmm  will be calculated. When 
 *mm , there is a non-zero allowable vector 

iu for 

the following equation to be valid 
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and the conditions: 2

i j i j i js 2 e / e , when 
i je 0 ; 

i js R , when 
i je 0.  

In case of 
 *mm , there is a non-zero vector 

iu , when the equation 

p

i j i j i i * i i i i * i j i j i

D S D D D

s e (u )dx [u ]dS m f u dx F u dS m s e (u )dx



      
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holds with the conditions: 2

i j * i j i js 2 e / e , when 
i je 0;  

i js R , when 
i je 0.  

The values of 


** , mm  can be calculated through relevant static and kinematic 

coefficients. The static coefficient for 


*m  is defined as: 

0 0

i j i j i s i j i j i

D S D

s e dx [u ]dS m s e (u )dx,



      при Φ0 0 0

i i j i ju P,{ s , ( s ) 0 }.    
(31) 

For 


*m  the similar equation is written as: 

0 0

i j i j i s i j i j i

D S D

s e dx [u ]dS m s e (u )dx,



      при 
0Φ

0 0 0

i i j i ju P,{ s , ( s ) 0 }.    

Formulas for the kinematic coefficients are as follows: 

i j i k i j i j i

D S D

( e )dx [u ]dS m s e (u )dx



      , iu P;  

(32) 

0 i j * i k i j i j i

D S D

( e )dx [u ]dS m s e (u )dx,



      iu P.  

By analogy with (13) the limit relations hold 
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
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 *
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0
0

mmm k
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s
s

iij

 (33) 

and non-trivial vectors 

iu , 

iu , obtained from the variational principles, are ensured to exist 

in *0B  extended classes  

 
i i

i j i j i * i j i j i
u P u P

D S D

inf J ( e ) inf ( e )dx [u ]dS m s e (u )dx



  

 

 
   

 
    (34) 

i i

i j 0 i j * i * i j i j i
u P u P

D S D

sup J ( e ) sup ( e )dx [u ]dS m s e (u )dx



  

 

 
   

 
    (35) 

 Extremum principles (34), (35) equal to the initial setting of the problem regarding the 

existence of the solutions for the rigid plastic continuums with two loading surfaces (if the 
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problem is set in the form of the virtual power principle where possible stresses are limited by 

i js R ). In other words, it is proved that, within the rigid plastic continuum with two loading 

surfaces, forces i if , F  cause non-trivial displacements only when the conditions (34), (35) and 

the equalities are satisfied. 

1**   mm  (36) 

Hereinafter we shall consider that the time of deformation Tt 0  is split into the 

finite number of intervals, whereas one of the conditions 1* m  or 1* m  is satisfied in each 

of them. The case of 1* m  is seen similar to the plotting in section 2, when it is reasonable 

to use (24) as an additional requirement to normalization of the displacements and to consider 

the laws of thermodynamics (21), (22) to be satisfied automatically. When 1* m  (reverse 

deformation), the situation becomes more complicated because the laws of thermodynamics 

are not automatically satisfied on surface 
0Φ i j( s ) 0  at moderate temperatures. 

Validly, when heat is not supplied, there should be AE    but 2

* i jdA / dx 2 e , and 

the experiments demonstrate a value of 2

i jdA / dx 2 e , 1       for internal energy 

power. 

In other words, in order to perform the reverse deformation, the work comparable to the 

force deformation has to be done. Using the analogy between the plastic flow and melting 

[18-19] it can be stated that the work to convert the rigid continuum into the plastic one (the 

flow under stress  ) is comparable to the work done during the reverse “flow-melting”. 

Deformation of the continuum with two loading surfaces is very similar to the steel behavior 

at high temperatures, close to the melting point. 

In Figure 5 the solid wavy line (number 1) describes the experimental curve for the 

shear yield stress of soft steel as a function of temperature, whereas number 2 is a dotted 

polygonal line used in technical melting calculations [20]. If the curve 2 is replaced with the 

similar solid thick main line 3 and the energy of reverse transformation for shape memory 

alloys is assumed to take intermediate value 2

i j2 e , 1     , when the process runs 

under stresses * , then the temperature, corresponding to 
*2 , can be called “shape 

restoration temperature. The latter hypothesis is equivalent to the existence of the “latent 

melting heat”. It is natural to call number γ a “parameter of the reverse transformation latent 

heat”. It should also be noted that interpretation of the shape memory materials as a solid 

continuum with two loading surfaces is close to hysteresis modeling by Preisach [21-23] in 

magnetic alloys. 

Essentially, shape memory materials are upgraded alloys where the point of “reverse 

melting” is moved to the area of moderate temperatures. For such materials the first law of 

thermodynamics 
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E Q A,  2

i jE 2 e ,  2

* i jA 2 e .  (37) 

explains the necessity of additional heat supply 0 AEQ   for the “reverse flow” — shape 

restoration. In order to validate feasibility of work performance at the expense of the heat 

supply, the second law of thermodynamics, written in the Clausius form, should also be taken 

into account 

 

Figure 5. Shear yield stress of soft steel   as a function of temperature θ when testing 

centrally compressed specimens (curves 1, 2) under stress σ and possibility to interpret the 

area between 500 and 600 
0
C with two loading surfaces: 1 is an experimental curve (solid 

wavy line); 2 is a simplified curve used in technical estimates (dotted line); 3 is a polygonal 

line corresponding to two loading surfaces   and *  (solid thick main line); number γ is a 

“parameter of the reverse transformation latent heat” 

H Q.   (38) 

Because there is no free energy F E H ,   then E H H Q A,      and from 

(38) it follows that H A.   The value H  is estimated up to the constant accuracy, therefore, 

  can be chosen so that A 0,  i.e. heat input performs the reverse operation. 

4. PHENOMENOLOGICAL ANALYSIS OF SHAPE MEMORY RIGID PLASTIC 

CONTINUUMS 

Let us consider that the material of body D has a shape memory if the following 

conditions are satisfied: М1. 3D manifold D is a rigid plastic continuum with two loading 

surfaces. Equations (26)–(34), connecting stresses and deformation rates, are satisfied. The 

external loads can be counterbalanced with deviator i js , and the equation 

  

*

2

*0 ,0,0)(2)( ijijij sss  holds. 
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М2. Function   (absolute temperature), as well as constants  and * , which are 

experimental functions of θ, are defined within domain D. 

М3. In case of 1* m  (shape restoration), the variational principle (35) is valid. 

Additionally, variables   and iu  can be linked at any point of time Tt 0  with the first 

law of thermodynamics and Fourier’s thermal conduction law 

2 2

i j i 1 2 ij ij i

D

[ 2 e (u ) с с q( x ) s e (u )]dx 0.           (39) 

where 1c  is heat capacity ratio,   is material density, 2c  is heat conductivity ratio, 2  is 

Laplacian operator, q  is density of applied heat per unit time. 

If 1* m  (force loading), the variational principle (34) holds under the condition (24), 

whereas the first law of thermodynamics turns into the heat conductivity equation: the applied 

heat changes the temperature of the solid per formula (40) without additional deformations 

2

1 2с с q( x ) 0      (40) 

M4. The material “remembers” deviation from the initial position at any point of time 

and distributes the applied heat based on formula (39), only when the state of deformation 

differs from the original one. The “shape restoration” occurs: the direction of deviator 
i je  

from (39) is opposite to the remembered one. 

The results from the previous section allow us to state that the solutions for the solids 

with M1–M4 properties exit. Validly, if the external forces are balanced with the stress 

deviator located within the domain R  (Figure 4), the geometry of the domain does not change 

i je 0 , and the temperate is calculated from the equation (40). If deformation occurs 

according to М3, then (as stipulated before) velocities iu  can be estimated within extended 

space MB *0  per variational principles (34), (35) at any point of time. Taking density q  

from the same space and considering 
i js  a continuous coordinate function means that the 

temperature can be selected from manifold .M  This conclusion follows from the 

possibility to explicitly solve equations (39)–(40)
  

[24] 
 
relative to time using spectrum 

factorization of Laplacian operator Z  

2 2 2

2

2 2 2

1 1 2 3

с
Z ,

с x x x

  



   
   

   
 (41) 

 

Θ

t

2

i j i i j i j i

0

( t ,x ) exp(( t Z ) ( x ) exp(( t s )Z ) [ q( s ) 2 e (u ( s )) s e (u )]ds,        







0

,!/))(())exp((
k

k kZxtZxt

  

k k

0

Z dE .


 
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Letter   designates the initial temperature of the solid. The joint use of (35) and (39) 

can often be simplified because the shape is normally restored at constant temperature 

02   . Thus, the equation 

 

2

i j i i j i j i2 e (u ) q( x ) s e (u ) 0      (42) 

and homogeneity of the loading functions enable calculating “reverse deformation” 
i je  and 

the power of the external forces 

p

i j i j i i i i i i

D D D

s e (u )dx f u dx Fu dS A(u )


     . Once 

velocities iu  are defined, the displacements iw  are calculated per the formulas (25): this 

operation can be done within the space MB *0 , if the ultimate states (36) are achieved the 

finite number of times during the deformation on the interval Tt 0 . 

5. CONCLUSIONS 

This paper demonstrates that the deformation process of the shape memory continuums 

is described within the theory of plasticity with two loading surfaces. Taking into account the 

link between the plastic flow and melting, shape restoration can be identified with melting at 

moderate temperature, whereas yield under high stress can be identified with melting under 

ultimate load. Different types of melting occur within one model, but each of them is satisfied 

with its own variational principle supported by external loads and deformation rates. The 

loads and temperatures are linked by the first and second laws of thermodynamics. The above 

conditions provide for existence of the generalized solutions and enable tracking the history 

of change in the continuum configuration. During the course of the evidence, it was proved 

that the deformed shape is not the only one. Additionally, the functions defining solutions to 

optimum problems, are often discontinuous. 

The characteristics related to the ultimate analysis of the problems for the shape 

memory materials enable raising some questions that require further studies. First of all, it 

refers to the classification of the non-trivial solutions to the optimum problems (34)–(35) 

under additional restrictions on the continuum behavior, as well as identification of the 

conditions when discontinuous solutions occur. The direct methods of numerical analysis 

deserve further development because the finite-element method for the analysis of nonlinear 

extremum problems is often associated with loss of accuracy. The wide application of shape 

memory materials in many technical and scientific designs generates optimism for successful 

advancements in the above areas. 
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